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Abhstract

The object of this study is to find the trajectories
which a high performance aircraft would employ to maximize
the change in specific energy during a prescribed turn.

These values of the change in specific energy are compared
to the changes‘in specific energy which result from a
minimum time turn. A suboptimal control approach, which
uses both gradient and second-order parameter optimization
techniques, is employed to find the maximum specific energy
trajectories.

The results of the study show that turning times slightly
greater than the minimum turning time allow large increases
in aircraft specific energy, and that the trajectories can be

flown with simple control inputs.




TIME-CONSTRAINED MAXIMUM-ENERGY TURNS

I Introduction

Background

Today's rapidly advancing technology has produced great
improvements in fighter performance. Modern aircraft such
as the F-15 and the F-16 have a thrust-to-weight ratio greater
than one, and employ lightweight composites in some areas.
These give the aircraft excellent maneuverability, far exceed-
ing older aircraft such as the F-4 and the F-111. In light of
this new capability, air combat tactics are being reviewed
and modified so the pilot can take full advantage of the
increased maneuverability. Aircraft modifications are also
studied when further improvement may be possible.

Over the last decade the advantages and disadvantages
of thrust reversal have been debated (Ref 1,2). The Navy
tested a Grumman F-11 with an inflight thrust reverser and
found that it could produce rapid accelerations and deceler-
ations (Ref 3). However, they did not examine specific
combat scenarios.

Johnson (Ref 4) studied minimum-time turns with thrust
reversal. These 180 degree turns are common air combat
maneuvers, and the pilot generally needs to turn as quickly
as possible. Johnson found that thrust revéfsal could improve
turning time, but the improvement was generally very small and

could cost a great deal of aircraft specific energy. This




was a serious drawback, since specific energy is a measure
of the aircraft's ability to engage and defeat opponents.
One of Johnson's recommendations was to consider ways of
conserving energy during a turn.

Problem Statement

The problem is finding the optimal controls that will
maneuver a fighter aircraft through a given turn and enable
the aircraft to gain the maximum energy. Turns are evaluated
by taking sligh' 'y more time than the minimum and computing
the controls. The minimum times were computed by Johnson
(Ref 4). The simulation will include aircraft performance
limits on thrust, angle-of-attack, and load factor.

The objective of the study is to determine whether a
slightly longer turning time allows the aircraft to gain a
significant amount of energy. A sufficiently large energy
gain may well justify the longer turning time. If a large
energy gain is obtained then an additional objective will be
to determine simple tactics for flying the turn. The use of
thrust reversal is not anticipated, but it is not specifically
excluded.

The scope. of this study is limited to finding the optimal
trajectories and final energies starting from two different
velocities and terminating at three sets of final conditions.
Thus, six different cases are evaluated. The velocities are
taken from previous work in order to make a meaningful com-

parison.




Assumptions

The following assumptions are made in order to model the
equations of motion, the aerodynamic forces, and the atmos-
phere:

a) the aircraft flies over a flat earth with
constant gravity;
b) all turns are coordinated;
¢) negligible fuel is consumed during the turn;
d) thrust is collinear with velocity;
e) errors introduced by small angle assumptions
are negligible;
f) lift is a linear function of angle of attack up
to the angle of attack limit;
g) maximum thrust is available throughout the turn;
h) the atmosphere is modeled using the NASA standard
atmosphere (Ref 5);
i) the aircraft is initially in straight and level
flight;
j) controls are instantaneous.
, These assumptions are identical to those employed in past
studies (Ref 4,6). Thus, it is possible to compare results.
v with these studies.
. Approach
A specific turning situation is defined with initial

i and final conditions. The optimal control problem is defined

and solution difficulties are explored. The problem is

simplified by using a suboptimal control approach. This
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approach is straightforward and has proved to be an effective
means of computing the controls (Ref 6,7).

Summary of Current Knowledge

Johnson's minimum turning times for two sets of initial

conditions are shown below, Neither case has reverse thrust

capability.
Table 1. Minimum Turning Times
Vi hi Ei Vf hf Ef tf
(ft/sec) (£t) (ft) | (ft/sec) (ft) (ft) (sec)
621 13990 | 19991 781 17350 | 26829 9.643
903 13990 | 26678 672 16150 | 23168 | 11.178

These results were obtained with the flight path angle and

the heading angle initially equal to zero and final conditions
of zero flight path angle and 180 degrees heading angle. The
same initial and final conditions are used in this study in

! order to compare results.




II The Energy Turn Problem

The concept of the energy turn problem is to define
trajectories which allow the aircraft to perform a specific

turn and maximize the energy change

_ _ _ _ 1 2_ ., 2
AE = (E:f Ei) = (hf hi) + zg(Vf Vi ) | (1)

during the turn. The turn is defined in terms of initial and
final conditions. Then the equations of motion, aerodynamic
forces, and atmosphere are specified.

Turn Conditions

The aircraft is assumed straight and level at the start
of the turn. 1Initial and final conditions are summarized in
Table 2, below:

Table 2. Initial and Final Conditions

0 0 0 )
CASE Vi(ft/sec) hi(ft) ei e ef Ve te tmin(sec)
1 621 13990 0 0 0] 180 |1.05t . 9.643
min
2 621 13990 0 0 0] 180 |1.10t . 9.643
, min
3 621 13990 0 0 01180 | 1.25t . 9.643
min
4 903 13990 0 0 0180 |1.05t . 11.178
R min
5 903 13990 0 0 0| 180 | 1.10t . 11.178
min
6 903 13990 0 0 0] 180 | 1.25t_. 11.178
min

V is chosen below and above the corner velocity. The value

of tmin is from Johnson's results (Ref 4).

Equations of Motion

During the turn the aircraft must obey the dynamic

T AT P A 1. I TS SR ORI 5, e T T s




equations of motion. Because trajectory analysis is concerned
only with the development of the flight path, the aircraft

can be modeled as a point mass. The equations of motion for a
point mass aircraft over a flat earth as developed in Ref

(8:48-49) are:

X = Vcosbfcosy (2)
§ = Vcosfsiny (3)
h = Vsing (4)
vV = g(%cosecosg - % ~ sinéb) (5)
6 = Qg;$n¢ + gL§35¢ - gcsse - %%(sin¢cosesinc-
cos¢sine) (6)
b = %%%2%(%sin¢+%) (7)

Application of earlier assumptions yields Q=0, sing=0, e=a,

' sino=a, and cosa=1l. The simplified equations are:

X = Vcosfcosy (8)
\Q
) y = Vcos6siny (9)
! h = Vsin® (10) |
J « _ T _D _ _. |
vV = g(w W sing) (11) |
: b= U o + & 12 |
| 8 = V{(Wa + W)cos¢ - cosf} (12) i
. |
‘:ME E !
V= Vcosa W t W@ ' (13) 1




Aircraft motion is modeled with respect to an earth-fixed
coordinaté frame. The six state variables are x , y ,

h , v , 6 , and ¢ . The three control variables are
o , ¢ , and T . The gravitational acceleration at
13990 ft is g = 32.131 ft/sec2 and is used throughout the
turn. The aircraft weight is 12150 1lbs. The aerodynamic
forces, thrust, and atmosphere models appear in the sections
that follow.

Aerodynamic Forces

These forces are composed of 1lift and drag. They are

expressed as follows:

2

L= pOoV SCL (14)
2
_ 2
D = QOOV SCL (15)
2
Cp, = Cpa (16)
o
C.=C. +KC,2 (17)
D DO L
For the aircraft modeled in this study, S = 237 ft2 and
C, = 5.0 (Ref 4). Since flight in the transonic region is
a
possible, compressibility corrections are made for K and
CDO (Ref 9):
Table 3. Compressibility Corrections
M K CD
0.
0.0-.8 .05 .02
0.8-1.05 |[.05 + .4(M-.8) .02 + (M-.8)2{6.016-5.12M}
1.05-1.25].05 + .4(M~-.8) .06 = _05(M-1.05)

o




(2

The corrections are approximate and are typical of this type

of airfoil. Figure 1 depicts K and CD vs M.
0]

.7 .8 .9 1.0 1.1 1.2 1.25

Figure 1. K and CD vs M.
o)

Thrust

M

It is assumed that maximum thrust is available throughout

the turn. Thrust is given as
T=T T, (18)
where 7 is a thrust control variable. For constant weight

the thrust to weight ratio becomes

Tmax7T - (I
W W

)

T _
== (19)

m
max

For this aircraft the maximum thrust-to-weight ratio is 1.5.

Atmosphere
The density ratio ¢ in a standard atmosphere is defined

(Ref 9) as

1
1, 9 AT
o=8 =1 -2 2P (20)
0]




The constants are:

o = .002378 slugs/ft>
g = 32.174 ft/sec2

T = 518.688 deg R

n = 1,235

R = 1715 ft?/sec-deg R

Control Constraints

There are three aircraft constraints.

They are the angle

of attack limit, the structural load limit, and the thrust

limit:

(21)

(22)

(23)

(24)

The maximum lift-to-weight ratio for this aircraft is 7.22.

The maximum angle of attack is 0.2 radians.
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III Optimal Control Approach

Classically, trajectory ?roblems such as this are
phrased in terms of an optimal control problem. This
chapter defines the basic conditions that the optimal solution
must satisfy.

Optimal Control Problem

The optimal control problem requires finding the
functional relationships for the control variables that will
maximize the aircraft specific energy. The energy is

expressed as the performance index
2

Ve

which is subject to the differential equations of motion

X = £(X,u)
where X is the state vector and f represents the right side
of egqns (8) through (13). The problem is further subject to
the control constraints, eqns (21) through (24), and the
initial and final conditions of Table 2. The final conditions

are expressed as
Ml = ef (26)
M, = ¥ - 180. (27)

When the final conditions are satisfied,

M= = 0. (28)

10




Conditions to be Satisfied
(Ref {10:149-1547)

The solution of the optimal control problem maximizes
an augmented performance index, J, as
e
J=6+vM+ aT(s-%)at | (29)
t.
i
where v and A are Lagrange multipliers. The variational

Hamiltonian, H, is expressed as

T

H(X,u,x) = A7f. (30)

The optimal solution must satisfy the Euler-Lagrange equations:

T
T _ _ _;;_H_
A= HX = (ax) (31)
T
L - T - BE
_ min
opt = U H (33)

The solution must also satisfy corner conditions and transver-

sality conditions:

H, =G, =0 (34)
1
Hf + Gt = 0 (35)
£
Tl e =0 (36)
1 X.
1
T
Al -G =0 (37)
f xf
A(H) - G, =0 (38)
C
11

VE
7
.




g -

S

L

20T + G, =0 (39)
C

G =0 (40)

Solving the Optimal Control Problem
(Ref 11)

If the controls are neither on the boundaries nor sing-
ular, eqn (33) implies Hu=0 which may be solved for the
controls as functions of X and A. Thus, the problem is
converted to a boundary value problem. Initial values of )
are guessed, and the X and X equations are integrated.
Generally, the end conditions are not satisfied. Various
techniques can be used to vary the initial guesses, so that
the end conditions (egns (26), (27)) are satisfied.

One major problem with this method is guessing reasonable
A's., This is difficult because the A's are not related to any
physical quantities. Additionally, corners must be specified
and this further complicates the problem. Hence, the boundary
value problem is extremely difficult and time-consuming to
solve. Since the problem is so difficult, the approach must
be simplified so that a reasonable solution can be obtained.

The Suboptimal Control Method is used to accomplish this.

12
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IV The Suboptimal Control Problem

The suboptimal control problem is a parameter optimization
problem. This transformation is achieved by assuming that
the controls can be described by a known mathematical form,
such as a polynomial, with coefficients represented by a

vector A (Ref 4,6,7). Then the controls can be written as

U = U(t,Ap) (41)

Equations (8) through (13) can be integrated from t=0 to

t=tf and the final states will be functions of the A parameters:
Xf = Xf(A) (42)

Hence, the performance index G and the final conditions M are
also functions of A, The problem, then, is to find the A

parameters which maximize the specific energy, G,

G = G(A) (43)
subject to the equations of motion

X = £(X,A,t), (44)
the final conditions

M(A) = 0, (45)

and the control limits.

Conditions to be Satisfied

The augmented performance index, F, is defined as

13




F(A,v) = G(A) + vIM(A) (46) .

Ordinary differential calculus requires an optimal set of

A's and v's to satisfy 2 conditions:

T _ T _

Fa (a,v) = Gy + VM, =0 (47)
T

Fv (A,v) = M(A) =0 (48)

where MA and GA are defined as

_ M

MA = 32 (49)
_ 3G

GA = 33 (50)

F, represents a gradient that indicates the direction A

should change to drive FA to zero. FAT is a function of the
A parameters. M is the final condition matrix which has two
elements. A solution to the suboptimal control problem

must only satisfy eqns (47) and (48). The v's can be computed

with a gradient method (described i~ the next section), so the

A coefficients are the only values which must be guessed.

These are the controls and are easy to guess since they directly

relate to physical quantities. The optimal control problem
requires one to guess )'s, which are unrelated to physical
quantities and are very difficult to guess. Thus, the sub-
optimal approach is much simpler to implement than the optimal
control approach.

Method of Solution

Hull and Edgeman define a second order parameter

14
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optimization technique in Ref 7. This technique is designed

specifically for suboptimal control problems and is employed
here. The method uses second order information to change the
A parameters and the Lagrange multipliers v such that FA and
M are driven to zero (eqns (47) and (48)). Changes toc A and

v are computed as follows:

_ -1, T,-1 ,_ -1_ T
v = (MuF T D Th (-PM,FL TR, T+ M) (51)
-1 T T
§A = FAA (PFA + M, Sv) (52)
where
32F
Fan = A2 Gan * ViMaal * VoMano- (53)

P and Q are scaling factors that control optimization and

end condition satisfaction, while F contains second order

AA

information. The iterative algorithm for the method is:
1: guess v and A
2. integrate the equations of motion to find X
M G

3. compute M, M and GAA

A" TAA’ A’
4, select values of P and QO
5. compute values of §v and §A
6. compute v = v+dv and A = A+8A
7. check for convergence and go to step 2 if not
converged.
Convergence is obtained when each FA term and each M are less
than some small tolerance. The initial vector v is computed

using relationships which were developed by Hull and Edgeman:




T,-1

- _ T
vo= (MM, )T {(Q/P)M - MG, ) (54)

_ T
§A = PFA (55)

One characteristic of the second-order method is that it

requires very good initial guesses. Usually the first-order

method is used until the changes in v and A become very

small. Then, the second-order method is employed (Ref 4,7).
The only real difficulty with the suboptimal control

approach involves the selection of the scaling factors P and Q.

This is explained in section V.




" V Solving the Constrained Energy Turn Problem

The energy turn problem must be solved with numerical
methods. Here, the energy turn problem, defined in chapter
II, is adapted to the suboptimal control method. This chapter
presents the actual forms of the equations of motion, control
constraints, numerical derivatives, and convergence criteria.

Equations of Motion

The equations of motion are represented by eqns (8)
through (13). Substitutions for the aerodynamic, atmospheric,

and gravitational parameters yield the following equations:

dx

3t - Vcosfcosy (56)
dy - VcosOsiny (57)
dt
dh _ .
3f = Vsinso (58)
& = 48.201 - v?(D/12150) - 32.13sine (59)
N g_i - 32\-,13{(1,577(1 + (L/12159))cos¢ - cosf} (60)
L !
: dy _ 32.13
| 3t = v (1.570 + (L/12150)) (61)
)
N
- Control Variable Constraints
. Two of the three controls are affected by constraints.
o The thrust parameter has a maximum value of 1, so that
i
’ 0 < 7 < 1 (62)
: z =
i 17




Equations (21) and (22) each-define a constraint on the

angle of attack. For the load factor,

[0} OVZSC a
° La L
I — < (W) (63)
max
The load factor constraint can be simplified to
ov3a < 62060.6 (64)
The angle of attack constraint is
a < .2 (65)
These constraints are illustrated in Figure 2.
¢ = %nax
: _ 62660.6
X oV
a !
1
Velocity Vc
Figure 2. Angle of Attack vs Velocity
The corner velocity Ve is the velocity at which the 1lift
coefficient for flight at the maximum load factor is the
maximum lift coefficient. The corner velocity can be
specified as
v - (82660.6)" (66)
c a o
max

Using eqn (65) for *hax yields

v, = 559.735¢" % . (67)




Control Variable Form

The controls were represented by a series of Chebyshev
polynomials. These polynomials were selected because of good
numerical behavior over the control ranges (Ref 8). The
polynomials, Ti(t), are functions of time. For i=1 to i=6

they are as follows:

T (t) =1 (68)

T,(t) =2t - 1 (69)

T,(t) = 8t2 - gt + 1 (70)
3 2

T4(t) = 32t7 - 48t° + 18t - 1 (71)
4 3 2

T (t) = 128t° - 256t~ + 160t° - 32t + 1 (72)
5 4 3 2

Tg(t) = 512t° - 1280t° + 1120t~ - 400t° + 50t - 1(73)

The control variables are then

NPH

¢ (t) =k£1 Bka(t) (74)
NPI

m(t) =m£l Cme(t) | (75)
NA

a(t) =nil DnTn(t) (76)

where B, C, and D are the unknown coefficients; NPH, NPI,
and NA are the numbers of unknown coefficients; and ¢, w,
and o are the corresponding controls.

The constraints are exercised in the program by limiting

19
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the value of each contreol to its known maximum or minimum
whenever the polynomial would require it to exceed those limits.
During the integration the controls are continually checked

to determine if they are moving onto or off of a boundary. If
so, the integration stepsize is adjusted so that the integration
stops and starts again when the controls intersect the
boundaries. 1In this manner the accuracy is preserved. This

is especially important for the o limits.

Under certain conditions the 7 and o controls will not be
parameters in the problem. This situation is best illustrated
by the case in which all the controls are constant. If 7
and/or o are at their maximum values and if the FA's for
these controls are negative, then in order to change the
controls so the FA's are driven to zero, the controls must

exceed their maximum value, Likewise, if either control is

at its minimum and the corresponding F, is positive, then the

A
control must go below its minimum value. In either case, the
coefficients no longer become parameters because they are
fixed at their limits and their FA terms cannot be driven to
zero. Thus, the effects of these coefficients must be elimin-
ated in order to calculate év and 8A without their influence.
This is accomplished by dropping these parameters from the

matrices used to calculate §v and SA (Ref 4).

Numerical Methods

The algorithm requires the matrices M, MA' MAA' G and

AI

G M is evaluated by integrating the equations of motion

AA®
to yield the final states. A fifth~order, Runge-Kutta,

20
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Ce-—

controllable step size integration technique employing
Fehlberg coefficients is used (Ref 13). The variable step
size provision allows the technique to limit truncation error
and makes it more accurate than fixed-step methods.

The M M

" GA' and GAA matrices are determined by

A7’
using a central difference numerical derivative technique

(Ref 14). The equations of motion integrated using a positively

perturbed An
A, = An + én (77)

and a negatively perturbed An

A = A - &n (78)

with Sn as some small value. This yields M+, M, G+, and
G_. M, and G, are computed as
M, = B—d’z'—;:: + o (s%n) (79)
G, = f’z”—;-i—‘ + 0(5%n) (80)

where 62n is the error term. The MA matrix contains two rows.

The first row is determined by substituting M values from egn
{26) into egn (90). The second row comes from egn (27) and egn

(90). The two MAA matrices and the GAA matrix are obtained

using a similar technique. Two parameters An and Am are each

perturbed both ways so that M M__, M _, M

. G

++7 G__v Gyov

-+7 T4y’

and G_, are obtained. The central difference representations

for the second derivatives are:

21
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+ 2
MA A = 5 + o(87n) (81)
n m Sn
and
G, - 2G + G
- _+ - 2
GA A = 5 + o(87n) (82)
n'm én
if n = m, and
M - M - M + M
My o = + + -t =~ + o(6ném) (83)
n m 45ndém
and
G -G -G + G
Gy a = + ¥ —+ ~Z + o(8ném) (84)
n m 46ném

when n # m. As before, the MAA matrices are formed by using
eqn (26) values for the first matrix and eqn (27) values for
the second matrix.

The error terms can be ignored for sufficiently small

Sn's., d&n is computed as
. én = £(A_); (85)

however, if the absolute value of 8n is smaller than £, then

.‘ dn = E (86)
where £ is a small positive number. Various { values were
¢ tried in preliminary calculations in order to determine an
, accurate one. It was found that
¢
oL £ = 0.002 . (87)
v 7

. gave consistent, accurate results.
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Convergence Factors

The P and Q factors control optimization and end

condition satisfaction, respectively. These factors are

used to determine the size of §v and S8A for each iteration.

If the §'s are too large, the method will miss FA=0 and M=0.

If the §'s are too small, truncation error will cause the
method to wander, again missing the solution. A variety of
procedures can be devised to vary P and Q, but 8v and $A

must fall in a linear region about the nominal values. For
the energy turn problem the algorithm was started with Q=l.
This allowed the algorithm to quickly match the end conditions.

P was slowly raised as the F_ terms decreased. The best end

A
conditions and performance index are obtained when Q=P=1 (Ref 7).
Initially the gradient method was used. When it became
inefficient the second-order method was employed. The method

was stopped when P=1 and the following conditions were satisfied:

-4 (88)

(89)

Excluded were F, terms related to boundary controls, since

A

these terms can not be driven to zero.

Control Evolution

The trajectory evaluation was started by using constant
controls for the bank, thrust, and angle of attack. The
iteration procedure was followed until the solution satisfied
eqns (88) and (89). Then another bank angle coefficient was

included and another solution was computed, with bank as a
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linear function of time. The bank coefficients were continually
increased in this manner until the additional coefficient had
little effect on the performance index. Finally, ways of
improving the other controls were studied.

This approach to the controls was used on the six cases
described in Table 2. The first three cases start from
Vi=621 ft/sec with the final time equal to 105%, 110%, and
125% of the minimum turning time, respectively. The second
three cases start from Vi=903 ft/sec with the final time equal
to 105%, 110%, and 125% of the minimum turning time, respectively.
Trajectories were computed for these six cases, and then the
thrust controls were modified for the high speed cases of
105% and 110%. These results are presented in the next

chapter.




VI Results

The trajectories that have been obtained show that a
moderate increase in turning time can increase the specific
energy. In some cases the increases are quite large.

The best gains occur for the high speed cases, with
Vi=903 ft/sec. When performing a minimum time turn one tries
to decelerate to the corner velocity, since the turn rate is
highest at that velocity. 1In Johnson's study, this deceleration
caused a large loss of energy (Ref 4). By increasing the
turning time, one allows a slower turn rate, which then permits
a higher aircraft velocity. Thus, less deceleration is
required and the final velocity and specific energy are higher.
As each case was solved the effects of each control became
apparent.

The thrust control adds energy to the aircraft. This
energy can be used to increase velocity, altitude, or some
combination of both. One would anticipate that the highest
energy gains would utilize maximum throttle, and this was
“ proved true. Cases 1, 2, 3, and 6 had a full throttle (n=1)

\ in their final trajectories.

The angle of attack control determines the turn rate and -
,3 the climb rate. Johnson (Ref 4) found that aso. . gave the
I highest turn rate, and that lower o's required longer to turn
‘ the aircraft. In cases where the turning time is quite short

i (l.OStmin) a full a is required in order to satisfy the end

max

5 , conditions. In cases 2 and 3 the turning time is large enough

: 25




so that a is less than O ax for a portion of the turn.

-The bank angle ¢ matched the thrust to the turn rate so
th end conditions would be satisfied. It also establishes
the plane of the turning trajectory. The results show the
turn is performed in a constant plane in three-dimensional
space. This plane is inclined to the y-axis and includes the
x-axis. Thus, a graph of crossrange y versus altitude h shows
the trajectories as essentially straight lines (Figs 13~-15).
For the high speed cases the planes became more vertical as
the number of bank coefficients was increased, illustrating
altitude gains from one solution to the next.

The optimal coefficients for the polynomial controls of
cases 1, 2, and 3 are shown in Tables 4, 5, and 6. As the
bank control is increased in complexity the performance index
increases. However, above linear forms the additional bank
coefficients do not add a large amount of energy. The controls
are computed for constant, linear, quadratic, and cubic roll
functions while holding thrust and angle of attack constant.
The roll control histories for the low speed cases are shown
in Fig 3 through Fig 5. Crossrange plots for each case are
in Fig 6 through Fig 8. Figure 9 shows the final energy
trajectory for each case on a velocity-altitude graph. As the
graph shows, the specific energy does rise dramatically from
: one case to the next. This graph can be related to past studies

i of energy maneuvers.

Rutowski studied minimum time energy climbs in his paper

on aircraft performance (Ref 15). He found that for a pure

K
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climb, a minimum time energy trajectory would follow the
gradient of the constant energy lines that it crossed. Thus,
a velocity-altitude graph would show the trajectory running
perpendicular to the constant energy lines. Less efficient
trajectories would gain less energy for the same time of flight.
In this study, the aircraft climbs higher whenever the turning
time is increased. In each successive case the trajectory
becomes more perpendicular to the energy lines, hence producing
more efficient energy climbs. It is interesting to note
that in this study the optimal path is also a perpendicular
climb even though the aircraft is also turning as it climbs.
Case 3 has a large turning time; it has converged to a
perpendicular climb.
The optimal coefficients for cases 4, 5, and 6 are shown

in Tables 7, 8, and 9. As before, increasing the bank
control complexity increased the performance index. The bank

. controls were taken up to quintic forms for cases 4 and 5 and

. a quartic form for case 6. Figure 10 through Fig 12 illustrate

W the roll controls and Fig 13 through Fig 15 show the turning

. planes. As the roll control complexity increases, the

. trajectories become more vertical. Figure 16 shows energy

? trajectories for these cases. Case 4 loses a lot of velocity

as it decelerates toward the corner velocity. As time is

increased the energy increases. The trend from case 4 through
M to case 6 is again to produce a perpendicular climb, though

Yy ' there was insufficient flight time to allow a climb such as
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case 3. Cases 4, 5, and 6 had a constant angle of attack and
throttle, as the first three cases did. Cases 4 and 5 had a

partial throttle (m<l) which limited the energy available to

the aircraft. During any turn the throttle energy can be
converted to increased altitude or velocity. In these cases
the angle of attack was already at the limit, hence preventing
further altitude gain. The turning time limited the turning
velocity, hence it could not be increased. The partial
throttle values that were computed for these cases represent
the maximum energy that could be converted during the turn.
Linear throttle controls were used with the initial
conditions and final conditions of cases 4 and 5, creating
cases 7 and 8. It was expected that a different throttle
control could increase the energy available during the turn.
The new throttle controls had a very high slope and crossed
both the lower and higher boundaries of the control range. i
This implied that bang-bang controls would be appropriate. !
' A bang-bang control can instantly switch from off to on, and
viceversa. The controls that were computed required off-thrust
initially, and then full-thrust after a short time into the
turn. Table 10 has the control coefficients for cases 7 and

8 and Fig 17 shows the roll histories. The turning planes

{ are shown in Fig 18, Figure 19 illustrates all the high-speed
. energy trajectories(cases 4 through 8). Cases 7 and 8 both have
more perpendicular trajectories than the comparative cases 4

and 5. Both cases initially decelerate, allowing the aircraft

to accomplish a good portion of the turn. Then the aircraft
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attains a high rate of climb and cuts across the energy lines
in an efficient manner.

The energy gains for the final trajectory of every case
are shown in Table 11. All the turns have higher energies
than the minimum time turns, and the energy always increases
as the time increases. The benefit of increased energy would
have to be weighed against the increased turning time.

Thrust Reversal

Cases 7 and 8 use bang-bang controls to increase perform-
ance over the constant throttle cases. However, this type of
throttle control would be impossible to implement with today's
engines, since the engines require a few éeconds to cycle
from idle to full power. One possible way to avoid this
problem is to operate the engine at full power and deflect a
portion of the thrust. By using a mechanical thrust reverser
on the engine nozzle, one could reverse 50% of the thrust and
produce zero net thrust. Full thrust would be available with
retraction of the reverser, and this could be accomplished
very quickly. This would have the additional advantage of
eliminating engine thermal cycles, thus improving maintenance.

Pilot Technique

The trajectories obtained here can be generalized to
yield a few rules-of-thumb for piloﬁs attempting to fly
energy trajectories.

For the low speed cases, throttle should be set at
maximum and the load factor held at the maximum throughout

the turn. This turn can be improved by adjusting the roll
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in order to stay in the same turning plane.

For the high speed cases the angle of attack is held on
the angle of attack 1limit and the throttle should be varied
depending on how long the pilot is willing to stay in the turn.

A higher throttle increases energy but takes longer to turn.

Roll should be used to hold the turn in a plane.




VII Conclusions and Recommendations

The following conclusions and recommendations are based
on the results of this study.

The Suboptimal Control Approach is an effective means
of solving trajectory problems suqh as this one. The method
is straightforward and offers many advantages over the
Optimal Control Approach.

Increasing turning time allows substantial gains in energy.
Table 11 shows that even a small increase in time can greatly
increase the final energy. For the low speed case, a 5% time
increase yields a 29% energy gain over the minimum time
result. For the high speed case, a 5% increase will allow a
gain of 33% final energy over the minimum time case. This
33% gain amounts to 8701 energy feet. As the times were
increased by 10% énd 25%, the results were even better for
both the high and low speed situations. Bang-bang controls
were effective in improving performance for the high speed cases.
These controls could possibly be implemented with an in-flight
thrust reverser.

Relatively simple techniques can be used to fly energy
turns. In most cases a full throttle is permissible, thus
freeing the pilot to concentrate on the angle of attack and
the roll angle.

It is recommended that vertical climbs be investigated
as ways to perform energy turns. These would be Immelman

maneuvers. The equations of motion would have to be modified
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*4
4

because the & equation (eqn 13) would have an undefined term

at 8 = 90°. The crossrange graphs show increasingly vertical

lines as the roll coefficients are increased, implying that

a vertical climb would be interesting to investigate.
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